In the Bausch lab we focus on self-organization processes governing the structure formation process of organoids.
In the Bausch lab, we are interested in how mechanical forces govern the structure formation processes in organoid growth. To this end, we develop and apply various light microscopy, microrheology, microfluidics, bioprinting, and AI-based imaging processing tools. One major aim is to understand how complex structures form from the microscale, advancing knowledge in developmental biology and tissue engineering. As models we use human mammary gland organoids, Pancreas ductal adenocarcinoma tumoroids and most recently cardiac organoids.
To achieve our goals, we utilize advanced microfluidic devices to create controlled environments in order to systematically steer organoid growth. These devices allow precise manipulation of fluid flows, enabling specific biochemical cues and mechanical stimuli delivery to organoids. Live-cell imaging techniques monitor organoid development in real-time, providing detailed insights into the dynamic processes governing self-organization. Physical Models guide and complement our experimental studies, by predicting organoid behavior under microenvironment changes. This iterative approach, combining experimental data with computational predictions, refines our hypotheses and designs more effective experiments. We aim to develop novel high-throughput microfluidic approaches to facilitate large-scale screening of organoid responses to different stimuli. Automation and parallelization allow us to control quality and reproducibility of organoid growth.
In conclusion, our research group employs a multidisciplinary approach to study the physics of self-organization and the micromechanics of organoids. Utilizing advanced technologies such as microfluidics, live-cell imaging, optical tweezers, atomic force microscopy, and computational modeling, we aim to uncover the fundamental principles driving organoid development. Our high-throughput methodologies enable large-scale investigations, contributing to developmental biology and tissue engineering.
Prof. Dr. Andreas Bausch
Full team can be found here.
Coexisting mechanisms of luminogenesis in pancreatic cancer-derived organoids. S. J. Randriamanantsoa, M. K. Raich, D. Saur, M. Reichert, A.R. Bausch. iScience (2024)
Utilization of an Artery-on-a-chip to Unravel Novel Regulators and Therapeutic Targets in Vascular Diseases. V. Paloschi, J. Pauli, G. Winski, Z. Wu, Z. Li, L. Botti, S. Meucci, P. Conti, F. Rogowitz, N. Glukha, N. Hummel, A. Busch, E. Chernogubova, H. Jin, N. Sachs, H.-H. Eckstein, A. Dueck, R. A. Boon, A. R. Bausch, and L. Maegdefessel. Advanced Healthcare Materials (2024)
Surface-induced phase separation of reconstituted nascent integrin clusters on lipid membranes. C.-P. Hsu, J. Aretz, A. Hordeichyk, R. Fässler and A. R. Bausch. PNAS (2023)
Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles. S. Choi, K. Y. Lee, S. L. Kim, L. A. MacQueen, H. Chang, J. F. Zimmerman, Q. Jin, M. M. Peters, H. A. M. Ardoña, A.-C. Heiler, X. Liu, C. Richardson, R. Gabardi, W. T. Pu, A. R. Bausch, and K. Kit Parker. Nature Materials (2023)
Polarity and chirality control of an active fluid by passive nematic defects. A. Sciortino, L. Neumann, T. Krüger, I. Maryshev, T. Teshima, B. Wolfrum, E. Frey and A. R. Bausch. Nature Materials (2023)
Collective Cell Migration During Human Mammary Gland Organoid Morphogenesis. F. P. Hutterer, B. Buchmann, L. Engelbrecht and A. R. Bausch. Biophysics Reviews (2022)
Spatiotemporal dynamics of self-organized branching in pancreas-derived organoids. S. Randriamanantsoa, A. Papargyriou, C. Maurer, K. Peschke, M. Schuster, G. Zecchin, K. Steiger, R. Öllinger, D. Saur, C. Scheel, R. Rad, E. Hannezo, M. Reichert, A.R. Bausch. Nature Communications (2022)
VASP localization to lipid bilayers induces polymerization driven actin bundle formation. T. Nast-Kolb, P. Bleicher, M. Payr, and A.R. Bausch. Molecular Biology of the Cell (2022)
Activity-induced polar patterns of filaments gliding on a sphere. C.-P. Hsu, A. Sciortino, Y. A. de la Trobe, and A. R. Bausch. Nature Communications (2022)
In Vivo Photocontrol of Microtubule Dynamics and Integrity,Migration and Mitosis, by the Potent GFP-Imaging-Compatible Photoswitchable Reagents SBTubA4P and SBTub2M. L. Gao, J. C. M. Meiring, A. Varady, I. E. Ruider, C. Heise, M. Wranik, C. D. Velasco, J. A. Taylor, B. Terni, T. Weinert, J. Standfuss, C. C. Cabernard, A. Llobet, M. O. Steinmetz, A. R. Bausch, M. Distel, J. Thorn-Seshold, A. Akhmanova, and O. Thorn-Seshold. J. Am. Chem. Soc. (2022)
Reversible and spatio-temporal control of colloidal structure formation. H. Dehne, A. Reitenbach, and A.R. Bausch. Nature Communications (2021)
Mechanical plasticity of collagen directs invasive branch elongation in human mammary gland organoids. B. Buchmann, L.K. Engelbrecht, P. Fernandez, F.P. Hutterer, M.K. Raich, C.H. Scheel and A.R. Bausch. Nature Communications (2021)
Generation of ductal organoids from normal mammary luminal cells reveals invasive potential. H. M. Ganz, B. Buchmann, L. K. Engelbrecht, M. Jesinghaus, L. Eichelberger, C. J. Gabka, G. P. Schmidt, A. Muckenhuber, W. Weichert, A. R. Bausch. and C. H. Scheel. The Journal of Pathology (2021)
Surface-tension-induced budding drives alveologenesis in human mammary gland organoids. P. Fernandez, B. Buchmann, A. Goychuk, L. K. Engelbrecht, M. Raich, C. H. Scheel, E. Frey and A. R. Bausch. Nature Physics (2021)
Full publication list: PubMed, Google Scholar
European Research Council (ERC)
Technische Universität München
Center for functional Protein Assemblies (CPA)
Lehrstuhl für Zellbiophysik E27
Ernst-Otto-Fischer-Str. 8
D-85748 Garching